
Journal of Structural Geology, Vol. 14, No. 10, pp. 1253 to 1266, 1992 0191-8141/92 $05.00+0.00 
Printed in Great Britain © 1992 Pergamon Press Ltd 

Mechanical interactions between rigid particles in a deforming ductile 
matrix. Analogue experiments in simple shear flow 

BENOiT ILDEFONSE* 

Geologisches lnstitut, ETH-Zentrum, CH-8092 Z~irich, Switzerland 

DIMITRIOS SOKOUTIS 

The Hans Ramberg Tectonic Laboratory, Institute of Geology, Uppsala University, Box 555, 
S-75122 Uppsala, Sweden 

and 

N E l L  S. MANCKTELOW 

Geologisches Institut, ETH-Zentrum, CH-8092 Ziirich, Switzerland 

(Received 25 July 1991; accepted in revised form 1 May 1992) 

Abstract--The mechanical interaction between two or more particles is investigated in Newtonian simple shear 
flow. The experimental models allow observation of both the particlc rotation and the deformation pattern 
around the particles. The finite and instantaneous strain patterns around rigid particles are strongly hetero- 
geneous and asymmetric, with high finite strain zones aligned to the direction of maximum finite stretch. These 
correspond to local flow with low vorticity number. Heterogeneous strain patterns around rigid particles spread 
over a distance of 1-2 times the particle length and this distance increases with increasing bulk strain. Where rigid 
particles are more concentrated, these patterns coalesce and the overall pattern is then strongly controlled by the 
particles and cannot be simply related to the external boundary conditions. In rocks, the characteristic 
asymmetric strain pattern around rigid isolated particles is a reliable shear criterion, which becomes unreliable 
with high concentrations of rigid particles. Particle rotation is significantly disturbed when the distance between 
adjacent particles of equal size is shorter than their length, that is only in very concentrated suspensions of rigid 
particles. In a composite shape fabric, the development of the sub-fabric corresponding to the smaller minerals 
will be more disturbed. 

INTRODUCTION 

NUMEROUS structures in rocks, such as boudins (Goguel 
1948, Lloyd & Ferguson 1981, Goldstein 1988, Mala- 
vieille & Lacassin 1988), porphyroclasts (Passchier & 
Simpson 1986, Passchier 1987, Van Den Driessche & 
Brun 1987) and shape preferred orientations (Blumen- 
feld & Bouchez 1988, Fernandez 1988, Benn & Allard 
1989, Ildefonse et al. 1990) result from progressive 
deformation of a system composed of rigid particles 
distributed in a ductile matrix. The form and symmetry 
of these structures are commonly used as tools for 
structural and kinematic analysis. Methods used to ana- 
lyse such structures are based on the simple model of 
Jeffery (1922), which considers the rotation of an iso- 
lated axisymmetric eilipsoidal rigid particle in a Newto- 
nian fluid (e.g. Jeffery 1922, Ramsay  1967, pp. 221-226, 
Gay 1968, Reed & Tryggvason 1974, Ghosh & Ramberg  
1976, Fernandez et al. 1983, Passchier 1987). However ,  
natural structures are quite frequently controlled by 
rigid particle populations sufficiently concentrated to 

*Present address: Laboratoire de Tectonophysique, Universitd 
Montpellier II, 34095, Montpellier Cddex 05, France. 

produce contact between at least some of the particles. 
The resulting particle tiling is currently used as shear 
criterion in magmatic rocks (Den Tex 1969, Blanchard et 

al. 1979, Biumenfeld & Bouchez 1988). Except  for this 
important  application, the disturbance in particles' be- 
haviour, which results from interference between neigh- 
bours, has been largely neglected. The more detailed 
effects of mechanical interactions between rigid objects 
in rocks has not been fully investigated because no 
analytical solution to this problem has yet been devel- 
oped. We must,  therefore,  rely on experimental  or 
numerical modelling in order to integrate these effects 
into methods for structural and kinematic analysis of 
rigid particle fabrics. 

An earlier series of experiments (Ildefonse & Fernan- 
dez 1988, Ildefonse et al. 1992) clearly demonstra ted the 
influence, in two dimensions, of the concentration of 
particles on the development  of a shape preferred orien- 
tation. Interactions between particles were responsible 
for a decrease in the fabric intensity and, in simple shear 
flow, for a perturbation in the cyclic rotation of the 
fabric axis (Iidefonse et al. 1992). It was suggested that 
the changing velocity of particle rotation was due not 
only to actual collision between particles, but also to 
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perturbation in the matrix flow around closely-spaced 
neighbours. It was emphasized, however, that the limit- 
ing distance, below which particles significantly interact, 
was not well established. Anczurowski et al. (1967), 
studying the behaviour of rigid rods in a fluid subjected 
to couette flow considered that "the effect of particle 
collisions are important however dilute the suspension 
may be, provided that it is sheared for a sufficiently long 
time". In geology, however, we are dealing with only 
limited finite shear strains. Burgers (1938) suggested 
that in a liquid in laminar motion "every particle should 
dispose of a volume which is large compared with the 
third power of its length". This would imply that inter- 
actions have non-negligible effects on the development 
of most natural rigid particle fabrics found in geology. 

The experimental work presented here was per- 
formed to obtain a more detailed understanding of the 
mechanical interaction between two or more particles in 
simple shear flow. The analogue models, more simple 
than earlier models, allow an investigation of particle 
rotation as a function of the distance between adjacent 
particles and of the initiation and development of the 
heterogeneous strain field around the particles. 

analysis of the progressive deformation field. The fine 
carbon grids were produced according to the 'photo- 
copy' method of Dixon & Summers (1985, p. 93), with a 
modification in that it proved more useful to use trans- 
parent (acetate) sheets, rather than paper (Treagus & 
Sokoutis 1992). There is perfect coherence across the 
particle-matrix interface, as demonstrated by the lack of 
any offset in marker lines. The applied constant shear 
strain rate was 2 _+ 0.4 x 10 -3 s -1 (corresponding to a 
natural strain rate of 1 _+ 0.2 x 10 3 s-l). 

A sequence of photographs were taken on each run 
and enlarged prints were subsequently digitized. From 
this successive record of the grid inscribed on the top of 
the models, the progressive displacement and defor- 
mation history around the rigid particles could be deter- 
mined. Calculations based on the digitized position of 
grid nodes were computed using a Macintosh menu- 
driven program (Mancktelow 1991). The orientation of 
the particles has been manually measured directly from 
the photographs. 

EXPERIMENTAL RESULTS 

METHOD 

The models were run in the Hans Ramberg Tectonic 
Laboratory of the Uppsala University, using a simple 
shear box composed of 100 U-shape metal plates, each 1 
mm thick (Fig. 1). Each plate is free to move relative to 
others, the sides of the box perpendicular to the plates 
being constrained by two rotating plates. Homogeneous 
simple shear in the model (in the central part of the box, 
within the 'U' region of the plates) is achieved by pulling 
the last plate of the set, this movement being generated 
by an electric motor (Fig. 1). The upper surface of the 
model is unconstrained. Local changes in surface area 
(determined from analysis of the inscribed grid, see 
below) remain small for all the experiments, demon- 
strating a close approximation to plane strain. 

The material used as a ductile matrix was a Newtonian 
silicone bouncing putty 'Rhodorsil Gomme GSIR', sup- 
plied by Rh6ne Poulenc (Paris) (see Sokoutis 1987 for 
calibration). Particles were blocks of Plexiglas with an 
aspect ratio of 3 (18 mm long, 6 mm wide and 40 mm 
thick) floating in the silicone putty. A passive grid made 
of carbon powder covers the model surface, allowing an 

Perturbation around the particles 

The most immediate result obtained from this type of 
experiment (e.g. Ghosh 1975, Ghosh & Ramberg 1976, 
Van Den Driessche & Brun 1987) is the heterogeneous 
deformation field developed around the particles (Fig. 
2). The perturbation induced by the presence of the rigid 
particle is easily envisaged by partitioning the overall 
deformation into homogeneous and heterogeneous 
components (Mancktelow 1991). The perturbation in 
the finite displacement is graphically represented by 
plotting the vectors joining the nodes of the grid corre- 
sponding to the homogeneous component to the actual 
grid (Fig. 3). These 'perturbation vectors', distributed as 
closed loops around the particles, show that the pertur- 
bation in the displacement field extends to a large 
distance (minimum 1-2 times the particle length) away 
from each rigid particle. The higher the bulk finite 
strain, the larger the zone of perturbation around the 
particle. In all runs presented here (except run 10), the 
particles are close enough for these disturbed zones to 
coalesce at y = 0.8. 

Finite strain pattern 

Fig. 1. Schematic drawing of the shear box at the Hans Ramberg 
Tectonic Laboratory at Uppsala (Sweden), seen after shearing. The 

sense of shear is sinistral. 

As a consequence of the perturbation induced by the 
rigid particles, the local finite strain field is highly hetero- 
geneous, both in orientation of the principal axes of 
finite strain (Fig. 4) and finite strain magnitude (Fig. 5). 
In all runs except run 6, the particles are oriented 
oblique to the passive grid lines (Fig. 2). As a result, the 
few strain magnitudes calculated across the particle- 
matrix interface are non-significant and represent an 
average over a discontinuity in strain values. At y = 0.8, 
the normal background natural finite strain is 0.39 (sinh 
e = 7/2, Hsu 1966). Contour values of 0.35 and 0.5 (0.45 



I n t e r a c t i o n s  b e t w e e n  r ig id  pa r t i c l e s  and  duc t i l e  m a t r i x  

Run 10 

Run 11 

Run 12 

Fig. 2. Initial and deformed (7  ~ 0.8) stages of runs 10, l 1, 12, 6, 13 and 15. In all runs, the grid is initially a set of vertical 
and horizontal lines. 
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Run 6 

Run 13 

m ~i~ ̧ 

Run 15 

Fig. 2. Continued. 
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run 10 

. . . - : . . , ' . .  .. . . . . . . . . . .  : , . - \ - ~  . . . . . .  

run11 

run 12 

Fig. 3. Perturbation induced by the particles in runs 10, 11 and 12. 
Perturbation is visualized by the vectors join the nodes of the homo- 
geneous background simple shear grid (obtained from best-fit calcu- 

lation; see Mancktelow 1991) to the nodes of the model grid. 

in run 6) were chosen to bound the area where the finite 
strain field is not disturbed, or only slightly so. When the 
particle is far enough from its neighbour to behave as if it 
were completely isolated (run 10), the surrounding 

strain field shows an asymmetric pattern with two major 
high strain zones, aligned along the bulk finite strain 
major axis (34.1 ° for ~ --- 0.8), bounded by four low strain 
ones (Fig. 5). Similar patterns are observed in half- 
sectors unaffected by interactions (left and right sides of 
the models) in runs 11, 12, 13 and 6. It is slightly different 
on the left side in run 6, where the particle is initially 
lying sub-parallel to the shear plane; two additional 
small high strain zones appear, while low strain is 
reduced to one zone on each side of the particle. When 
particles are close enough for interaction to occur 
(centre part in runs 11, 12, 13, 6 and run 15), this pattern 
is obviously changed. The strain field is then locally 
strongly controlled by the spacing and orientation of the 
rigid particles (see below). 

Instantaneous deformation pattern 

In order to describe the instantaneous deformation 
pattern which is responsible for the observed finite strain 
pattern, we use the kinematic vorticity number W~ 
(Truesdell 1953, McKenzie 1979, Means et al. 1980, 
Passchier 1986, Mancktelow 1991). This number is, at a 
given point, the ratio between the magnitude of the 
vorticity vector (the vorticity is the antisymmetric com- 
ponent of the velocity gradient tensor) and an invariant 
term related to the eigenvalues of the rate-of- 
deformation tensor (symmetric component  of the veloc- 
ity gradient tensor). More simply, relative to an arbi- 
trary fixed reference frame (Truesdell 1953, Passchier 

run 10 

run11 

......... a~s ~ "  

run 12 

run 6 

run 13 

gun I 5 

Fig. 4. Finite strain orientation pattern in runs 10, 11, 12, 6, 13 and 15. Each plotted axis is the major axis of the finite strain 
ellipse at a gwen point of the grid. Axes immediately adjacent to the particles are not significant, see text for further 

discussion. 
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run 10 

< 0.2 0.2 - 0.35 0.35 - 0.5 0.5 - 0.6 > 0 . 6  

run 11 

< 0.2 0.2 - 0.35 0.35 - 0.5 0 . 5 - 0 . 6  > 0 . 6  

run 12 

< 0.2 0.2 - 0.35 0.35- 0.5 0.5- 0.6 > 0 . 6  

Fig, 5. Finite strain magnitude pattern in runs 10, 11, 12, 6, 13 and 15. Natural finite strain e is calculated in each point 
plotted in Fig. 4; e would be about 0.4 (sinh e = 7/2) if the deformation had been homogeneous (see text for further 
discussion). Particles are not represented for better clarity, they are located in the white low-strain areas (see Figs. 2-4 for 

particle positions). 
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run 6 

< 0.2 0.2 - 0.35 0.35 - 0.45 0.45 - 0.5 

run 13 

> 0.5 

< 0.2 0.2 - 0.35 0.35 - 0.5 0.5 - 0.6 

run 15 

> 0.6 

I I ~ m m 
< 0.2 0.2 - 0.35 0.35 - 0.5 0.5 - 0.6 > 0.6 

Fig. 5. Continued. 
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run 10  

< 0 . 5  0 . 5  - 0 . 9  0 . 9  - 1.1 1.1 - 1 .5  > 1.5 

run 11 

< 0 , 5  0 . 5  - 0 . 9  0 . 9  - 1.1 1.1 - 1 .5  > 1 ,5  

run 12  

r-----q I / 
< 0 . 5  0 . 5  - 0 . 9  0 .9  - 1.1 1.1 - 1 .5  > 1 .5  

Fig. 6. Kinematic vorticity number pattern in runs 10, l l ,  12, 6, 13 and 15. Kinematic vorticity number ~/k is calculated in 
each point plotted in Fig, 4; Wk would be about 1 (simple shear) if the deformation had been homogeneous (see text for 
further discussion). High Wk corresponds to dark grey patterns, low Wk corresponds to light grey and white patterns. 
Particles are not represented for better clarity, they are located in the dark high-Wk areas (see Figs. 2-4 for particle 

positions). 
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run 6 

I I ~ m m 
< 0 .5  0 .5  - 0 .9  0 .9  - 1.1 1.1 - 1 .5 > 1.5 

run 13 

< 0 .5  0 .5  - 0 .9  0 .9  - 1.1 1.1 - 1.5 > 1.5 

run 15 

~ ~ . ,  R 
: i i :  ::z~ ........ ?~. 

< 0 .5  0 .5  - 0 .9  0 .9  - 1.1 1.1 - 1.5 > 1 .5  

Fig. 6. Continued. 
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1986), Wk expresses the rate of rotation vs the rate of 
stretching for the instantaneous homogeneous defor- 
mation at the considered point. Wk ranges between 0 
(coaxial flow) and oc (rigid-body rotation); for simple 
shear, W k = 1. When W k < 1, the flow is non-coaxial, 
intermediate between coaxial and simple shear, with 
open hyperbolic flow trajectories; when W k > 1, we are 
in the field of the so-called pulsating flows (non-coaxial), 
with closed elliptical flow trajectories (Ramberg 1975, 
McKenzie 1979, Means et al. 1980, Ramsay & Huber 
1983, Passchier 1986). 

The kinematic vorticity number Wk has been calcu- 
lated across each of the deformed grids (Mancktelow 
1991); Fig. 6 shows the results on the six runs presented 
here, at shear strain 0.2. The background field, in white, 
corresponds to W k close to 1, i.e. to flow close to simple 
shear. Significant perturbation around isolated particles 
(run 10) is then distributed as an asymmetric pattern 
(Fig. 6), with one zone, containing the particles, where 
W k is higher than 1.1 (non-coaxial pulsating flow), and 
two zones where Wk is lower than 0.9 (non-coaxial flow 
closer to coaxial flow than simple shear). This pattern is 
consistent whatever the finite shear strain. At a given 
shear strain, the low W k zones correspond to the zones 
of high finite strain. When particles are close enough for 
interactions to occur, the perturbation zones coalesce 
(run 11, 12, 6, 13 and 15). The rigid particles must then 
be considered in our system as local boundaries locally 
controlling the flow. 

Effect of  particle rotation on the flow in the matrix 

Rotating particles behave as mobile internal bound- 
aries within the models. The flow immediately adjacent 
to such internal boundaries will generally be affected by 
a time-dependent component of rigid-body rotation 
related to the time-dependent (periodic) rotation of the 
elongate particle. 

A component of rigid-body rotation is expressed by 
the time-dependent rotation (sometimes called spin) of 
the instantaneous stretching axes in the fixed reference 
frame (Means et al. 1980, Lister & Williams 1983, 
Ramsay & Huber 1983, Passchier 1986), and is part of 
the vorticity term in W k. The geometry of fabrics should 
depend only on the flow component related to the 
instantaneous stretching axes and not on the rigid-body 
rotation component. The 'degree of non-coaxiality' of 
the flow is then characterized by the 'internal vorticity 
number' (Means et al. 1980, Passchier 1986), in which 
the vorticity is given with respect to the instantaneous 
stretching axes and not to the fixed reference frame. Any 
type of flow is thus described relative to an arbitrary 
fixed reference frame by using this parameter (coaxial, 
non-coaxial or pulsating), together with the 'spin' com- 
ponent (spinning or non-spinning) which is the addi- 
tional rigid-body rotation of the instantaneous stretch- 
ing axes relative to the chosen fixed reference frame 
(Means et al. 1980, Lister & Williams 1983, Passchier 
1986). 

Calculating the vorticity with respect to the instan- 

taneous stretching axes is difficult from experimental 
results however, because the length of the instantaneous 
stretching axes is so small that the error in determining 
their orientation is too large (particularly as high rates of 
rigid-body rotation are generally related to low stretch- 
ing rates). The calculated absolute values for the rigid- 
body rotation component are, therefore, unreliable and 
the obtained patterns are not really consistent. For this 
reason, the more accurate classical 'total' vorticity num- 
ber is used throughout the above discussion. It is clear, 
then, that it is difficult to distinguish rigid-body rotation 
from internal vorticity in the flow adjacent to the par- 
ticles. It seems, however, that the rigid-body rotation 
component is not negligible. 

Boundary effects 

In both finite strain patterns (Fig. 5) and instan- 
taneous deformation patterns (Fig. 6), there is some 
perturbation in the background fields, not related to the 
particles, but lying along the boundaries of the models. 
This boundary effect is particularly consistent in the 
finite strain patterns (Fig. 5), where the high strain zones 
around the particles tends to coalesce with high strain 
along the lower fixed boundary. This reveals that the 
background strain in the models is not perfectly homo- 
geneous. Considering contour values close to the back- 
ground strain (Fig. 7), it is difficult to distinguish a limit 
to the perturbation related to the particles from the 
perturbation related to the boundaries. The contour 
levels in Fig. 5 have been chosen to minimize this effect 
but, on the other hand, Fig. 7 shows that some infor- 
mation is thereby lost in Fig. 5 and not obvious in Fig. 3. 
If very small departures from the background finite 
strain are considered (Fig. 7), the particles in run 10 are 
close enough to produce an extensive low strain zone 
between them and extending beyond them, parallel to 
the shear plane. Flow is disturbed over a large distance 
away from the rigid particles, when compared to their 
size (at least one time the particle length). 

However, boundary effect do not have critical influ- 
ence on the particle rotation, because the magnitude of 
this effect is low compared to the total finite strain. 
Moreover, we compare in this study experiments with 
different particle configurations but identical boundary 
conditions, i.e. any potential boundary effect would be 
common to all experiments. 

run 10 

Fig. 7. Finite natural strain (e) contours close to the background 
strain (e ~ 0.4) in run 10. The thicker contour is e = 0.4, contour 
interval is 0.02. e increases towards the boundaries and diminishes 
toward the particle (see Figs. 2-4 for particle positions). See text for 

further discussion. 
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Particle rotation 

In simple shear flow, rigid particles undergo cyclic 
time-dependent rotation, with a period depending on 
their aspect ratio (Jeffery 1922, Ramsay 1967, Gay 1968, 
Reed & Tryggvason 1974, Ghosh & Ramberg 1976, 
Fernandez et al. 1983, Passchier 1987), such that the 
orientation of a particle is, at any given time, a function 
of its initial orientation, its aspect ratio and the shear 
strain (Fig. 8). Two experiments with isolated particles 
have been performed (Fig. 9) for comparison with the 
theoretical rotation curves of Fig. 8. The rotation of the 
particle initially oriented perpendicular to the shear 
plane (run 1) fits quite well with the theoretical curve ; it 
rotates just slightly faster than theoretically predicted. 
On the other hand, the particle initially oriented parallel 
to the shear plane (run 9) rotates much faster than 
predicted. This departure from the theoretical model is 
most likely due to the rectangular shape of the particles 
in our experiments; the mathematical model assumes 
elliptical shapes. Such a shape effect (see also Burgers 
1938, Ferguson 1979) must obviously be taken into 
account in the other experiments and not be mistaken 
for some interaction effect. 

Rotation of the particles in runs 10, 11 and 12 (Figs. 2- 
6) is shown in Fig. 10. With the largest distance between 
the two particles (~6 cm in run 10), their rotation is not 
disturbed; it is similar to the isolated-particle case (Fig. 
9). In run 11, the distance is shorter (~3 cm), particles 
rotate a little slower, but the difference from run 10 is 
very slight and probably of the same order of magnitude 
as the errors inherent in both experimental conditions 
and measurements. In run 12, the distance is shorter 
again (~  1 cm), shorter than particle length, and in this 
case, particle rotation is significantly slower, with a 
difference of about 5 ° from the theoretical curve after a 
shear strain of only 1.2. Figure 11 shows the result of 
similar experiments, but with two particles having differ- 
ent initial orientation (90 ° and 0°). Again, rotation of the 
particles is significantly disturbed when the distance 

aspect ratio : 3 
90 

30 

-30- 

-60- 

-90- 
0 0.5 1 1.5 

Y 
Fig. 8. Theoretical rotation curves for a rigid particle with an aspect 
ratio of 3 (equation in Fernandez et al. 1983). O, orientation of the 

long axis of the particle to the shear plane; 7, shear strain. 

100- 

80- 

60- 

0 40- 

200-' ~ o 

- 2 0 ~ .  ~ 
0 0.2 0.4 0.6 0.8 1 1.2 

Y 

Fig. 9. Rotation of isolated particles (runs 1 and 9). Measurements 
from experiments (symbols) are compared to theoretical curves given 
in Fig. 8 (solid lines). O, orientation to the shear plane; ~/, shear strain. 

between them is shorter than their length (--~ 1 cm in run 
6, ~3 cm in run 7). 

In runs 13 and 15 (Figs. 2 and 4-6), particles have 
different initial orientation and different size. In these 
two experiments (Figs. 12 and 13), the smaller particle 
(black dots) rotates much slower than the other larger 
particles with similar distances between them (compare 
also with run 6, where the particle with the same initial 
orientation of 0 ° rotates faster). The difference from the 
isolated case (Fig. 9) is about 15 ° after a shear strain of 
only 1.2. 

Comparison with other models 

Various previous studies have already dealt with the 
heterogeneity of deformation around rigid inclusions, 
and our results concerning the deformation field are 
similar to what is already published. In the experiments 
by Ghosh (1975) and Ghosh & Ramberg (1976), strain 
markers in the matrix are too rare to allow visualization 
of the strain field (except figs. 2-4 on pp. 189-190 of 
Ghosh 1975). Deflection of the linear passive markers is, 
however, in full agreement with the asymmetric hetero- 
geneous strain field we observe. Ghosh & Sengupta 
(1973) published photographs of experiments with a 
high concentration of stiff but deformable particles in a 
viscous matrix. Direct comparison with our strain fields 
is difficult, because it is locally largely controlled by the 
particles (similar situation to run 15 in Figs. 4 and 5); 
however, like in our experiments, strain is highly hetero- 
geneous. 

More recently, experiments have been carried out to 
simulate development of porphyroclast systems (Pass- 
chier & Simpson 1986, Van Den Driessche & Brun 
1987). Early stages in the experiments of Van Den 
Driessche & Brun (1987) also show strain patterns very 
similar to our experiments. Strain fields are not given by 
Passchier & Simpson (1986); however, the geometry of 
the deformed grid around the particles in our experi- 
ments show similar patterns to the developing tails in 
their models. 
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60 k 
] \  []O : run 10 
| ~N~ me : run 11 

50. ~ ~, IIO : run 12 

0 40 O m 

30 

2 0 | , , , , , , , ~  , , , . , . ,  , 
0 0.2 0.4 0.6 0.8 1 1.2 

Y 

Fig. 10. Rotat ion of two parallel particles in runs 10, 11 and 12. The 
darker the symbols,  the closer the particles (see text for further 

discussion). 8, orientation to the shear plane; 7, shear strain. 

60 

3O 

0 0 L ~ l ~ l L J L ~  

-30 

-60  

-90 . . . . . .  ~ ' ' ' r ' ' ' r ' " ~ ' '  
0 0.2 0.4 0.6 0.8 1 .2 

Y 

Fig. 13. Rotation of seven particles in run 15. Black dots correspond 
to the small particle (see Figs. 2 and 4), which rotates much slower (see 
text for further discussion). O, orientation to the shear plane; 7, shear 

strain. 

100 

60  

0 40 

I • ° : r u n 7  I 
20 Do run 6 

-20 [] 
o 0 '2  0'.4 2 

Y 

Fig. 11. Rotat ion of two perpendicular particles in runs 6 and 7. The 
darker the symbols, the closer the particles (see text for further 

discussion). 8, orientation to the shear plane; 7, shear strain. 

80 

60- 

40- 

0 20- 

0- 

0 0.2 0.4 0.6 0.8 1 1.2 

7 

Fig. 12. Rotat ion of three particles in run 13. Black dots correspond 
to the small particle (see Figs. 2 and 4), which rotates much slower (see 
text for further discussion). 8, orientation to the shear plane; F, shear 

strain. 

Masuda & Ando (1988) and Bjornerud (1989) present 
mathematical models of the deformation around rigid 
spheres in simple shear flow. Both models show asym- 
metric strain patterns similar to our experiments. 
Masuda & Ando (1988) also obtain a vorticity number 
pattern with high vorticity and low vorticity zones, but 
their pattern is symmetric. This difference from our 
results may be due to the fact that we consider elongate 
particles. 

DISCUSSION 

The results presented above are clearly specifically 
related to the chosen range of experimental conditions, 
which must be discussed before any comparison with 
rock structures can be attempted. 

(1) The bulk maximum recorded shear strain is low 
(7 ~ 1.2) when compared to many natural structures. 
The strain field would have a different geometry at 
higher shear strain, with progressive passive folding 
around the particle, as shown for example by Van Den 
Driessche & Brun (1987) or by Bjornerud (1989). 

(2) The matrix has a Newtonian linear viscous theo- 
logy. In a non-Newtonian flow, rotation of an isolated 
particle would be close to the Newtonian case, provided 
finite strain is not too high (Ferguson 1979). In a concen- 
trated suspension of interacting particles, however, the 
flow and strain patterns may change, because of strain 
localization for example. Then, because of this strong 
local flow disturbance, the rotation of individual par- 
ticles may change as well. 

(3) This experimental study considers only the end- 
member case of rigid particles. The effect of interactions 
in a population of stiffbut still deformable particles (Gay 
1968, Ghosh & Sengupta 1973, Freeman 1987, Freeman 
& Lisle 1987) will obviously be different. 

(4) The particle-matrix interface in these models is 
coherent, but this might not be always the case in nature. 
Odonne (1990) demonstrates the influence of move- 
ment along a fault on the adjacent deformation pattern. 
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First results of experiments currently performed in 
Z/irich also demonstrate the strong influence of slip at 
the particle-matrix interface; the deformation pattern, 
as well as the particle rotation, is very different (Ilde- 
fonse & Mancktelow in preparation). 

(5) Our models are only two-dimensional. Extension 
of quantitative results on particle rotation to three 
dimensions will most likely depend on additional para- 
meters, for example the particle shape (e.g. Freeman 
1985). The matrix between different rotating particles 
could also undergo more complex displacements outside 
the plane of the experiments. 

With these experimental limitations in mind, our 
observations still have important implications on the 
behaviour and mechanical significance of some natural 
structures. The results and their implications may be 
summarized in the following conclusions. 

CONCLUSIONS 

(1) The finite strain pattern around rigid particles is 
strongly heterogeneous and asymmetric, with high 
strain areas aligned along the bulk finite strain major 
axis. 

(2) The instantaneous deformation pattern, charac- 
terized by the kinematic vorticity number, is also hetero- 
geneous and asymmetric, Low ~/k areas (closer to co- 
axial flow than simple shear) correspond to the high 
finite strain areas, while high Wk areas (non-coaxial 
pulsating flow) correspond to the low finite strain ones. 
Such an asymmetric pattern, responsible in rocks for 
asymmetric structures (porphyroclast systems, deflec- 
tion of foliation) now classically used as kinematic indi- 
cators (e.g. Passchier 1987, Van Den Driessche & Brun 
1987, Vernon 1987) is consistently observed. The pat- 
tern of crystallographic preferred orientations in the 
matrix adjacent to isolated rigid objects, depending on 
local flow, may also be a reliable shear criterion. 

(3) The heterogeneous strain patterns around rigid 
particles spread over a large distance when compared to 
the particle size and increase in extent with increasing 
bulk strain. The maximum extent is limited by the 
dimension of the shear box, but exceeds 1-2 times the 
length of the particle. In a concentrated suspension of 
rigid particles, the heterogeneous strain patterns 
coalesce, the overall pattern is strongly disturbed and 
cannot be simply related to the external boundary con- 
ditions. Particles act in the suspension as internal mobile 
boundaries and locally control the flow, isolating some 
portions of the matrix where the flow is totally different 
from that imposed by the external boundaries. Crystal- 
lographic preferred orientations in such portions natur- 
ally cannot reflect the bulk boundary conditions. 

(4) Considering a population of equal-size particles, 
their rotation will be significantly disturbed when the 
distance between adjacent particles is shorter than their 
length. This means that the influence of interactions 
between rigid particles is probably not as dramatic as 
previously thought (Ildefonse & Fernandez 1988, Ilde- 

fonse et al. 1992) and would be significant (at least in the 
relatively low-strain range considered here) only for 
very concentrated suspensions. However, defining a 
critical particle density at which single particle theory 
seriously breaks down is still difficult. We need much 
more data with varying particle densities and particle 
size to do so. 

(5) For similar distances between unequal-sized par- 
ticles, the smaller particles are more affected. This result 
is obviously directly relevant to the analysis of sub- 
fabrics defined by different minerals, which has proved 
to be a good shear criterion (Fernandez et al. 1983, Benn 
1989, Benn & Allard 1989). If the minerals defining the 
different sub-fabrics have significant different sizes (e.g. 
feldspars and biotites, see also Iidefonse et al. 1992, fig. 
9), the rotation of the sub-fabric defined by the smaller 
particles may be very different from what is theoretically 
expected, and the shear criterion may therefore become 
unreliable. 
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